Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 24(1)2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35052129

RESUMO

Automatic prediction of the aesthetic value of images has received increasing attention in recent years. This is due, on the one hand, to the potential impact that predicting the aesthetic value has on practical applications. Even so, it remains a difficult task given the subjectivity and complexity of the problem. An image aesthetics assessment system was developed in recent years by our research group. In this work, its potential to be applied in commercial tasks is tested. With this objective, a set of three portals and three real estate agencies in Spain were taken as case studies. Images of their websites were taken to build the experimental dataset and a validation method was developed to test their original order with another proposed one according to their aesthetic value. So, in this new order, the images that have the high aesthetic score by the AI system will occupy the first positions of the portal. Relevant results were obtained, with an average increase of 52.54% in the number of clicks on the ads, in the experiment with Real Estate portals. A statistical analysis prove that there is a significant difference in the number of clicks after selecting the images with the AI system.

2.
PeerJ Comput Sci ; 8: e1185, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37346318

RESUMO

This article seeks to provide a snapshot of the security of Wi-Fi access points in the metropolitan area of A Coruña. First, we discuss the options for obtaining a tool that allows the collection and storage of auditable information from Wi-Fi networks, from location to signal strength, security protocol or the list of connected clients. Subsequently, an analysis is carried out aimed at identifying password patterns in Wi-Fi networks with WEP, WPA and WPA2 security protocols. For this purpose, a password recovery tool called Hashcat was used to execute dictionary or brute force attacks, among others, with various word collections. The coverage of the access points in which passwords were decrypted is displayed on a heat map that represents various levels of signal quality depending on the signal strength. From the handshakes obtained, and by means of brute force, we will try to crack as many passwords as possible in order to create a targeted and contextualized dictionary both by geographical location and by the nature of the owner of the access point. Finally, we will propose a contextualized grammar that minimizes the size of the dictionary with respect to the most used ones and unifies the decryption capacity of the combination of all of them.

3.
Comput Struct Biotechnol J ; 19: 4538-4558, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34471498

RESUMO

Drug discovery aims at finding new compounds with specific chemical properties for the treatment of diseases. In the last years, the approach used in this search presents an important component in computer science with the skyrocketing of machine learning techniques due to its democratization. With the objectives set by the Precision Medicine initiative and the new challenges generated, it is necessary to establish robust, standard and reproducible computational methodologies to achieve the objectives set. Currently, predictive models based on Machine Learning have gained great importance in the step prior to preclinical studies. This stage manages to drastically reduce costs and research times in the discovery of new drugs. This review article focuses on how these new methodologies are being used in recent years of research. Analyzing the state of the art in this field will give us an idea of where cheminformatics will be developed in the short term, the limitations it presents and the positive results it has achieved. This review will focus mainly on the methods used to model the molecular data, as well as the biological problems addressed and the Machine Learning algorithms used for drug discovery in recent years.

4.
Entropy (Basel) ; 22(4)2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33286263

RESUMO

Providing the visual complexity of an image in terms of impact or aesthetic preference can be of great applicability in areas such as psychology or marketing. To this end, certain areas such as Computer Vision have focused on identifying features and computational models that allow for satisfactory results. This paper studies the application of recent ML models using input images evaluated by humans and characterized by features related to visual complexity. According to the experiments carried out, it was confirmed that one of these methods, Correlation by Genetic Search (CGS), based on the search for minimum sets of features that maximize the correlation of the model with respect to the input data, predicted human ratings of image visual complexity better than any other model referenced to date in terms of correlation, RMSE or minimum number of features required by the model. In addition, the variability of these terms were studied eliminating images considered as outliers in previous studies, observing the robustness of the method when selecting the most important variables to make the prediction.

5.
Entropy (Basel) ; 22(12)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266338

RESUMO

RealTimeBattle is an environment in which robots controlled by programs fight each other. Programs control the simulated robots using low-level messages (e.g., turn radar, accelerate). Unlike other tools like Robocode, each of these robots can be developed using different programming languages. Our purpose is to generate, without human programming or other intervention, a robot that is highly competitive in RealTimeBattle. To that end, we implemented an Evolutionary Computation technique: Genetic Programming. The robot controllers created in the course of the experiments exhibit several different and effective combat strategies such as avoidance, sniping, encircling and shooting. To further improve their performance, we propose a function-set that includes short-term memory mechanisms, which allowed us to evolve a robot that is superior to all of the rivals used for its training. The robot was also tested in a bout with the winner of the previous "RealTimeBattle Championship," which it won. Finally, our robot was tested in a multi-robot battle arena, with five simultaneous opponents, and obtained the best results among the contenders.

6.
PeerJ ; 7: e7075, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31346494

RESUMO

Humans' perception of visual complexity is often regarded as one of the key principles of aesthetic order, and is intimately related to the physiological, neurological and, possibly, psychological characteristics of the human mind. For these reasons, creating accurate computational models of visual complexity is a demanding task. Building upon on previous work in the field (Forsythe et al., 2011; Machado et al., 2015) we explore the use of Machine Learning techniques to create computational models of visual complexity. For that purpose, we use a dataset composed of 800 visual stimuli divided into five categories, describing each stimulus by 329 features based on edge detection, compression error and Zipf's law. In an initial stage, a comparative analysis of representative state-of-the-art Machine Learning approaches is performed. Subsequently, we conduct an exhaustive outlier analysis. We analyze the impact of removing the extreme outliers, concluding that Feature Selection Multiple Kernel Learning obtains the best results, yielding an average correlation to humans' perception of complexity of 0.71 with only twenty-two features. These results outperform the current state-of-the-art, showing the potential of this technique for regression.

7.
Acta Psychol (Amst) ; 160: 43-57, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26164647

RESUMO

Visual complexity influences people's perception of, preference for, and behaviour toward many classes of objects, from artworks to web pages. The ability to predict people's impression of the complexity of different kinds of visual stimuli holds, therefore, great potential for many domains, basic and applied. Here we use edge detection operations and several image metrics based on image compression error and Zipf's law to estimate the visual complexity of images. The experiments involved 800 images, each previously rated by thirty participants on perceived complexity. In a first set of experiments we analysed the correlation of individual features with the average human response, obtaining correlations up to rs = .771. In a second set of experiments we employed Machine Learning techniques to predict the average visual complexity score attributed by humans to each stimuli. The best configurations obtained a correlation of rs = .832. The average prediction error of the Machine Learning system over the set of all stimuli was .096 in a normalized 0 to 1 interval, showing that it is possible to predict, with high accuracy human responses. Overall, edge density and compression error were the strongest predictors of human complexity ratings.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Reconhecimento Automatizado de Padrão/métodos , Reconhecimento Visual de Modelos/fisiologia , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...